
A UNIFIED METHOD FOR THE SPECIFICATION AND VERIFICATION OFPROTOCOLS*

GREGOR V. BOCHMANNand JAN GECSEI
Departement d'informatique, Universite de Montreal
Montreal, Canada

Verification of communication protocols usually involves two parts: a state-machine analysis of the

control structure and proving some assertions about the semantic content of the protocol' s actions.

The two parts are traditionally, treated separately. This paper suggests that the two approaches are

not independent but rather complementary. It intro duces a unified model for protocols (and generally
cooperating distant subsystems) encompassing both aspects. The method is demonstrated on three dif-

ferent descriptions of the same protocol, each with a different tradeoff between state machine and

programming aspects. Verification of partial and full correctness is carried out in terms of the
three descriptions.

1. INTRODUCTION

)

Experience with design and logical verification of

communication protocols indicates that various

techniques are suitable for the verification of

different properties of the same protocol. All

known verification techniques derive in some way

from two fundamental approaches: the state machine

approach [I, 2] and the programming language ap-
proach. [3,4] The first of these has been used

when the properties of the protocol to be verified

are such as the absence of deadlocks or undesired

loops or proper sequencing of operations. The pro-
gramming language approach is used with properties

involving counting and, in general, in cases when

the state machine representations would become too

complex (involve too many states).

The state-machine techniques use always some form

of reachability analysis, whereas the programming

language method relies on proving assertions and

invariants [5 land normally does not address the

question of reachability or termination.

It would seem, at first, that there is little con-

nection between the state-machine and programming
language approaches to verification. This is

partly because both methodologies have their own

established formalism, quite different one from

another. Thus, attempts to establish a bridge

between the methodologies may be frustrated by the

necessity to pass from one formalism to the other,
which is not always trivial.

It is our belief that the two approaches to verifi-

cation are not independent,but rather complemen-

tary techniques. In order to benefit maximally

from both methods, they should be used together;

but it is first necessary to create a model that

incorporates both the state machine and program-

ming language formalisms. Such a model is des-
cribed in sections 2 and 3. We believe that this

model is widely applicable to the specification

and verification of systems of communicating pro-

ces ses. In order to show its usefulness, we have

chosen a particular system, a 'simple data communi-

cation protocol working over an unreliable trans-

mission medium, for which we present three dif-

ferent specifications in section 4,. In section 5

we demonstrate how some correctness proofs can be

carried out for the three descriptions.

*This work has been partly supported by the
National Research Council of Canada.

2. THE BASIC MODEL

In arecent paper, Keller [6] has proposed a
model, for the representation of parallel programs.

His model is essentially a Petri net [7] composed

of a set of places and transitions complemented
with a set of variables X. Each transition t

in the net has associated with it an enabling pred-

icate Pt' depending on some variables of X, and

an ~ At ' assigning new values to some vari~
ables of X. The state of the modeled system is

determined by the number of tokens that reside in

different places and the values of the variables.

A certain transition t of the system is enabled
when all its input places have at least one token

(standard rule for Petri nets) and its enabling

predicate Pt is true. When a~ansition is
enabled, it may fire, i.e. the corresponding action

At is executed, and the tokens are redistributed
according to the'rules of Petri nets.

In the original model all transitions and actions

are assumed to be instantaneous, which implies
their' mutual exclusion.

Keller's model is intuitively appealing since it is

capable of naturally representing some important

aspects of the systems being 'modeled:

control structure is represented by the inter-

connection of places, transitions and some vari-
ables of the set X

semantic structure is represented by the vari-

ables, predicates and actions associated with
transitions

parallelism and coordination can be modeled by

having several transitions enabled at the same

time. The number of tokens in the model is gene-
rally not limited.

3. THE EXTENDED MODEL

In Keller's model each variable can, in principle,

be affected by all transitions in the system. For

the description of distributed systems which con-

sist of several communicating subsystems located at

different points in space, it seems to be natural

that local variables of a given subsystem can only

be affected by the transitions of that subsystem.
We therefore extend Keller's model to include the

possibility of having several disjoint subsystems
and some means of communication between them as

follows.

A system S (i.e. parallel program) is composed of
a nurnber of subsystems SI' S2' ... ,S . Each
subsystem, separately, is modeled by thg forrnalism
of the previous section. If the set of variables
of subsystem S. is called X. (the local vari-
ables of Si)' then the predic~tes and actions
(calIed local actions) of the subsystem Xi only
refer to these local variables.

For the interaction of different subsystems, each
subsystem may contain certain distantly initiated
actions. Like the local actions, they may assign
new values to the local variables; however, they
are not associated with a given transition of the
subsystem. Distantly initiated aciions are exe-
cuted some finite time after they have been ---
initiated by a distant subsystem; this is done by
the execution of an initiating statement in a local
action of the distant subsystem. The initiating
subsystem may pass value parameters for the execu-
tion of the distantly initiated action. All
actions in a subsystem are executed in mutual ex-
clusion;

This form of interaction between subsystems seems
to capture the essential properties of subsystem
comrnunication through the exchange of messages. In
fact, the initiation of an action in a distant sub-
system corresponds to the sending of a message
(the action parameters are the message content),
and the execution of the distantly initiated action
corresponds to the receiving of the message by the
distant subsystem. .

We note that the state of the system, at a given
instant in time when no action is being executed,
is given by the states of all subsystems., Le.
their token distribution and variable values, and
the set of distant action initiations which have
not yet been executed. The latter set can be under-
stood as the state of the "cornrnunication medium",
or the messages "in trans i t". .

We also remark that the set of variables X.
together with all actions defined in S. cofistitute
an abstract data type with mutual exclU§ion of the
actions. [8]

For the specification of the variable declarations,
predicates and actions of a subsystem, we use a no-
tation close to the prograrnming language Pascal.
[9] Ini tiation of a distant -action can be -ächii:",7ed

by the primitive INITIATE < name, PI' ... , Pk>
appearing as a statement in a local action,
which specifies the name of a unique distantly
initiated action and k parameter values. We note
that the initiating action does not wait for the
completion of the initiated action, and that the
order of execution of several distantly initiated
actions may be different from the order in which
they were initiated.

4. EXAMPLES

In this section we show the flexibility of the ex-
tended model by giving three descriptions of the
same protocol: the first and second rninirnizing the
number of places and variables respectively, and
the third having a certain balance between them.

The protocol we use is essentially the "alternating
bit" protocol of Bartlett [10] which can be sum-
marized as folIows:

It is a point-to-point protocol using the cornmu-
nication medium alternatively in both directions.

In contrast to [10] we suppose data transfer in
one direction only, from the SENDERsubsystem to
the RECEIVERsubsystem.

The SENDERwaits for an acknowledge message
before the next data message is sent.

The protocol recovers from transmission errors
detected by a redundancy check, and from lost
messages through a time-out mechanism in the
SENDER. In both cases, retransmission of the
data message occurs.

4.1 ISENDERI

CB:)
Clock

One-place description

(a) 00
Send

Place diagram

Initial state

- seq=l ;ack=l

(b)

(c)

Variables:

Actions

Same as three-place description

(a) C8:) IRECEIVER I

Receive

Place diagram

Initial state

- exp=l; seqnb:none

(b)

(c)

Variables:

Actions

Same as three-place description

4.2 Six-place description

(a) Place diagrams
Al Dl

0

(jQ
Initial state:

7-
. clock - tokens in 1,7

- token in 3

- seqnb=none

(b) Variables: same as in three-state description
except that seq and exp are no longer needed as
a consequence. of the "unfolded" pI ace diagrams .
Actions: There would be an action (possibly
empty) associated with each transition. We do
not include a detailed list, since they are
analogous to those of the 3-place description.

(c)

Transi- enabling action
ti on predicate

Send ackfnone if ack=seq then begin
v new(data); seq:=

tout=true seq+l(mod2); end;

INITIATE (transD,seq,data);

ack:=none; time:=to;
tout :=false;

Cl ock 1 h d' .transA(p:(O,l)) same as t ree-place escrlptlon

Transi- enabling action
tion predicate

Receive seqnb*none if seqnb=exp+l (mod2) then
use(data); exp:=exp+l
(mod2); end;

INITIATE (transA, exp);
seqnb:=none;

transD (PI: (0,1) ,P2 : . . .) same as three-place
idescription

New I E.A .TI
'D Use

1
.. /-

lIC:F.NDER IDO (E,Al' T !New Al

4.3 Three-place description

!SENDER I

(b) Variables

s eq: (0, 1)

ack: (O,l,error,none)

data: . . .

taut: boolean

time: int eger

Initial state:

- tokens in 1,4

- seq = 1

~ Clock

~feaning

sequence number
of message sent
in this cyc1e

acknowledge from
receiver

data to be trans-
'mitted

time-out has
occurred

timer CO\ll1t

I RECEIVER I

Ini tia1 state

- token in 3

- exp = 1

- seqnb = none

Meaning

opposi te of ex-
pected sequence
number of message
received in this
cycle

seqnb: (O,l,error,none) sequence number
of received mes-
sage

data: . . . data in re-
ceived message

(c) Actions

transi-
tion

enabling
predicate

action meaning

New new(data);seq:=seq+l(mod2); get new data from
user

true

D INITIATE(transD,seq,data);

ack:=none;time:=to ;
taut :=false;

transmi t message
(seq, data)

true-

reception of ex-
pected acknowledge

reception of wrong
acknowledge

error in received

acknowl edge

timeout has oc-
curred

time:=time-l;if time=O
then tout:=true ;

timer action

distantly initiated action
transA (p: (0,1))

depending on the
transmission me-
dium, one of the
following will
occur:

case transmission of
correct : ack :=p; acknow1edge re-

ceived

erroneous:ack:=error; erroneous recep-
tion

loss ..
message lost., -

(c) Actions

(a) Place diagram

DNew A-

2 E,A.,
D

(a) Place diagram

Use
D*

!2

(b) Variables

exp: (0,1)

A= ack=seq

A,c ack=seq+l
(mod2)

E ack=error

T tout=true

Clock true

transi- enabling action meaning
tion predicate

Use true use(data);exp:=exp+1(mod2); give data to user

!2 true INITIATE (transA, exp); transmit message
seqnb :=none; (exp) (acknow-

1 edge)

D,.. seqnb=exp+1 ; reception of mes-
(mod2) sage with expectec

sequence number

D= seqnb=exp ; reception of mes-
sage with wrang
sequence number

E seqnb=error ; error in received

message

distantly initiated action depending on the

transD (p 1: (0,1) ;P2: . . .)
transmission me-

dium, one of the
fo1lowing will
occur:

case transmission of

correct:seqnb:=P1; message received(

data:=P2;

erroneous:. seqnb:= erroneous recep-
error tion

10ss message lost"

4.4 Comments

The purpose of the preceding examples is to demon-

strate that places and variables are complementary

means of representing the state of communicating

'subsystems. The correctnessproofs outlined in the

f following section are based on both aspects of the
formalismwe use. ----

We note, however that in these examples the full

power of Petri nets is not used; it is not clear to

us at this point whether this power is useful in

modeling communication protocols. The idea of

using finite state machines and variables for pro-

tocol description is not new; [11] however, our

approach incorporates also a means for describing
communications, which leads to a unified proof

methodology.

It should be clear also that the concept of dis-

tantly initiated actions can serve equally for

modeling of more general communication systems such

as the datagram service, or communicating processes

in operating systems.

5. VERIFICATION

We demonstrate in this section how the modeling

technique described previously can be used for the

verification of different properties of a protocol

such as absence of deadlocks, liveness, cyclic

behavior, partial and full correctness of the

global system. Of course these properties are not

mutually independent; however, the first four, gene-
rally, are necessary conditions for the last one.

Deadlock-freeness, liveness and cyclic behavior are

best derived from an analysis of possible transi-

tions of the global system i.e. the reachability

analysis. [1,2] This in turn requires taking into

account the control structures of each subsystem,
certain constraints on the order in which transi-

tions and distantly initiated actions can be exe-

cuted, and some assertions on program variables.

Verification of partial correctness [5] will cor-

respond in this paper to finding out whether and in

which circumstances the sender subsystem (and its

user) can "know" that all data obtained from the

user have been delivered correctly and in sequence

to the user in the receiver subsystem. This know-

ledge can be expressed by the predicate

PI : Producer-sequence = Consumer-sequence.

We say that the sender is in a complete state when

this state implies PI . Partial correctnessof the
system means then the existence of a complete sender

state, and full correctness means that such astate

is always reached after a finite amount of time

(liveness of the complete sender state and absence

of deadlocks).

We show in section 5.2 that for the three-state

description (see section 4.3) of the "alternating

bit" protocol the sender state "token in place I"

is complete. Similarly for the one- and

six-place descriptions the sender states

"ack = seq" and "token in place 1 or place 4"

respectively, are complete.

5.1 Possible transitions of the global system in

the three-place model

Before constructing a transition graph, we have to

\ point out the existence of the following constraint:

I the predicates and actions of the sender subsystem
are defined such that after the execution of tran-

sition 0 (containing ack:=none), the transitions

A= ' A*- or E can only become enabled after exe-
cution of the distantly initiated action transA
with correct or erroneous,transmission. A similar

constraint holds for the receiver. We also see that

the time-out transition 'can only occur after the
timer has been set by transition 0 and t clock
transitions have occurred. - 0

We can now determine the possible transitions of the

global system as shown in the diagram of fig. 1.

Each stat~ <pll,p12>action of the global system is

characterlzed by the actlve places plI and p12
(containing a token) of the sender and receiver sub-

system respectively ahd, possibly, by a distantly

initiated action not yet executed. The details of

deriving such diagrams have been presented else-

where. [2] Briefly, it is based on the control

structure of the subsystems, on the constraints

mentioned above, on the fact that the actions transA

and transD are. initiated (only) by the ~ and Q tran-

sitions of the receiver and sender respectively, and

on the initial state of the system.

We have assumed that the time-out delay t could be
chosen such that the time-out transition °T will

only occur after a transmission loss has occurred.

This clearly depends on the execution speeds and

delays of the different transitions and distantly
activated actions. We have not included these con-

siderations [1] in our model.

We can conclude from fig. 1 that the constraints

mentioned above do not introduce any deadlock (each

state has a successor) and that the system shows a

cyclic behavior such as expected for a data trans-

.mission protocol.

~,D .~;~<r
A=t ~;:;t T 1

(
<3,:transD

<3,D . !i <3,3 ><3'3>tr

ÄanSA ! D*A ~ <;J""

- I ~, <3,1><3,2> '"

Use

Fig. 1. Possible transitions-of the global

system (three-place description)

5.2 Verification of partial and full correctness

of the three-place description

We can establish the following assertions

ASl : sender token in place 3
sender.ack=O or 1

"

sender.ack = receiver.exp

ASZ : receiver token in place 3

receiver.seqnb=O or 1

"

=> receiver.seqnb = sender.seq

receiver.data = sender.data

"

which are used below for proving the partial and

full correctness. Assertion ASl follows from the
fact that when ack = 0 or 1 in place 3 then the
action transA must have been executed since the

sender has entered place 3. However, the receiver

uses the value of exp as an, effective parameter for

initializing the action t~sA and the receiver

could not have done any further transition (see

fig. 1) thus leaving the variable exp unchanged.

The assertion ASZ can be shown similarly.

Now we define the following global predicates:

PI : Producer-sequence=Consumer-sequence

Pz : Producer-sequence=Consumer-sequence
I sender.data(where the " I " means

nation)

P3 : sender.seq = receiver.exp

(as above)

concate-

ind establish the invariant assertion

I : (P A P3) v (PZ AI P3)' which is proved by
inducti6n over the number of transitions executed.

Initially (PI A P3) holds, which implies I. Suppose
now that I holds in some given state of the sys-

tem; we have to show that I also hulds after one

of'the subsystems has executed a transition or a

distantly activated action. We note that the dis-

tantly activated actions do not affect the predi-

cates PI' P Z -,or P 3' neither do the transitions, ex-
cept the Ne~ transltion of the sender and the Use ~,
transition of the receiver.

The following arguments show that I is invariant

in respect to the execution of the transition Ne~;

similar arguments apply for the transition Use.

From ASl' and the enabling predicate of the transi-

tion ~ in the sender follows that P3 holds when
a token is in place 1. Together with I, this im-

plies that PI holds in place 1. We now consider
the axiomatic definition [5]

Producer-sequence

Q tnew(data)}Q
Producer-sequence , data

for the procedure n~, which means that for proving

an assertion Q to hold after the execution of the

statement "new (data)", it is sufficient to prove

that Q' holds before the execution of the state-

ment, where Q' is obtained from Q by substitu-

ting "Producer-sequence I data" for each occurrence

of "Producer-sequence" in Q. This definition,

together with the form of the action associated

with the transition N~ shows that (PZ A I P3)
holds after the execution of Ne~, whiCh implles

that I holds, too. Therefore I is invariant

in respect to the transition N~.

, As mentioned above, the invariant I implies that

P holds when the sender is in place 1. Therefore

t~is is a'complete state, which implies the partial

correctness of the protocol.

Now, in order to demonstrate its full correctness,

we have to show that the complete sender state indi-

cated above is live. This can be seen from fig. Z

which shows the diagram of possible transitions of

the global system, where, in contrast to fig. I, we

distinguish the states for which P~ holds (indica-

ted by a " = ") and those for which, P3 holds
(indicated by a " * "). The .transition diagram

shows that the state < 1,3> - , corresponding to

the complete state of the sender, lies on the main

loop which is always followed when the transmission

medium works correctly. We note that in this case

the transitions A= and D* will never be blocked (

(see ASl and ASZ)' Therefore the complete sender
state is live as long as there is no permanent mal-
function of the transmission medium.

5.3 Verification of the one-place protocol

description
\

The verification follows the same lines as for the

three-place description. The assertions correspon-

ding to ASl and ASZ are

~f~ Q(~r~.,

q'P~q~ [qr~qr
<3.2>~ <3,1>* <3,2>*Use

I

I

CPI" P3) ho1ds CP2"'P 3) ho1ds

Fig. Z. Possible transitions of the global

system (three-place description, dis-

tinguishing states with respect to P3)

ASi : sender.ack = 0 or 1

sender.ack = receiver.exp

ASZ : receiver.seqnb = 0 or 1

~ receiver.seqnb= sender.seq A

receiver.data = sender.data

and the invariant I is the same as before.

We note that the diagram of possible transitions

for the global system does not contain much informa-

tion in this case, since each subsystem has essen-

tially only one place. This implies, in particular,

that the proof of the liveness of the cornplete
sender state is not as clear as in the case of the

three-place description.

5.4 Verification of the six-place protocol

des cript ion

, The .verification follows similar lines as for the

one- and three-place descriptiäns. The analysis

of possible transitions of the global system yields

the diagram of fig. 3. The only assertion used is

ASz: "receiver token in place 1 or-4 ~

receiver .data= sender .data" and corresponds to

assertion ASZ of the three-place description. There

is no invariant,but either PI or P hold de-
pending on the places of the sender ana receiver

tokens (see fig. 3). From this follows that the

sender is in a complete state when a token is in

place 1 or 4.

We note that the diagram of fig. 3 is equivalent to

the one of fig. Z, except that for the six-place

description each state in fig. 2 is replicated
twice, once for the value of seq = 0 and once for

seq = 1. We see that in this case [12] the reacha-

bility analysis that yields fig. 3 provides the

proof of the liveness of the complete sender state,

as weIl as the essential part of the "partial cor-

rectness" proof.

6. CONCLUSIONS

We have shown that the two complementary approaches
of state machine models and the use of variables can

be combined into a unified method for the specifica-

tion and verification of systems of cooperating sub-

systems. Our unified model includes also the con-

PI holds P2 holds

<5,3>"""

E,T

Al,E,T

qt: 1fl~
<6,3> I <3,3> - E

I'" I k
7 <3,2>

<3,3>

j!l

Tr lQl

<6,3> ~ <.6,2>

I

<3,4>

Dl'E t I

- --Use1- - tuse-
I

D ,E
<6,1> <3,5> - 0

ID, I !~l

-<6,6> I <3,6>

T j fQl I !~
~ <5,6>--L <4,6>

New
I

~ <2,6>

--

D-0

<.3,6>

r T!

<6.S>~

'"I

E E,T

<6.6>
Ao,E,T

Pz holds PI holds

v Fig.3. Possible transitions of the global

system (six-place description)

cept of distantly initiated actions, which seems to

be useful for modeling the communication of subsys-

tems through the exchange of messages.

We have demonstrated the flexibility of the model by

giving three different specifications for the same

simple protocol. We believe that the model can also

provide a natural description of more complex proto-

cols. For example, the opening and closing of con-

nections are usually described by astate machine

model, whereas the data transfer phase is described

by a program model with variables. [4] With our

model, both aspects could be described in a unique

specification.

For the verification, the two aspects of our model

complement one another. As shown in the example .

in the previous sections, the program aspect pro-
vides assertions for correctness proofs, whereas the

state machine aspect provides useful information for

the former and facilitates the proof of liveness or (
absence of deadlocks.

)

There is clearly a tradeoff between the complexity

of the state machine and program aspects of the spe-

cification, as can be seen, for example, from the

comparison of the one-place and six-place descrip-
tions. Since reachability analysis of state ma-

chines seems to be more amenable to algorithmic

methods than verifying (and finding) program as-

sertions, the above tradeoff may have important

implications for future automated methods of proto-
col verification.

REFERENCES

[1] P .~I. ~1erlin, A methodology for the design and
implementation of communication protocols,

IEEE Transactions on Comm., Vol. COM-24,

1976, 614-621.

G.V. Bochmann, Finite state description of

communication protocols, Publication # 236,

Dep. d'Informatique, Univ. de Montreal,

July 1976.

G.V. Bochmann, Logical verification and imple-

mentation of protocols, Proc. Fourth Data

Communications Symposium ACMjIEEE, 1975.

N.V. Stenning, A data transfer protocol,
Computer Networks 1 1976, 99-110.

C.A.R. Hoare, An axiomatic basis for computer

programming, CACM, 12, 1969.

R.M. Keller, Formal verification of Parallel

programs, CACM, 7, 1976, 371-384.

A.W. Holt and F. Commoner, Events and condi-

.tions, in Project Mac conference on Concurrent

Systems and Parallel Computation, June 1970.

B.H. Liskov and S..N. Zi11es, Specification

techniques for data abstractions, IEEE Trans.

on Software Engineering, SE-I, p. 7, 1975.
K. Jensen and N. Wirth, Pascal user manual

and report, Springer Verlag, Berlin, 1974.

K.A. Bartlett, R.A. Scantlebury and P.T. Wil-

kinson, A note on reliable full-duplex trans~

mission over half-duplex links, CACM 12, 260,
1969. -
A.S. Danthine, J. Bremer, An axiomatic des-

cription of the transport protocol of

Cyclades, Professional Conference on Computer
Networks and Teleprocessing, TH Aachen,
March 1976.

G.V. Bochmann, Communication protocols and

error recovery procedures, Proc. ACM Inter-

process Communications Workshop, March 1975.

Op. Syst. Review, Vol. 9, No. 3, 45-50.

[2]

J 3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

